

2.19 •• An antelope moving with constant acceleration covers the distance between two points 70.0 m apart in 6.00 s. Its speed as it passes the second point is 15.0 m/s. What are (a) its speed at the first point and (b) its acceleration?

Image from University Physics w/Moder Hugh Young.

First Step: Do not read the question! Rather, go from the back of the question and identify keywords.

Keywords **acceleration** and **speed**

Given	Needed	Seeking
$a_x = \text{constant}$	$\frac{dv_x}{dt} = a_x$	$ v_{1x} = ?$
$ v_{2x} = 15.0 \frac{\text{m}}{\text{s}}$	$v_x = a_x t + v_{0x}$	$a_x = ?$
$\Delta x = 70.0 \text{ m}$	$\Delta x = \frac{1}{2}(v_{1x} + v_{2x})t$	
$\Delta t = 6.00 \text{ s}$		

Position at time t of a particle with constant x -acceleration Position of the particle at time 0 Time
 $x - x_0 = \frac{1}{2}(v_{0x} + v_x)t$
 x-velocity of the particle at time 0 x-velocity of the particle at time t

(2.14)

Image from University Physics w/Moder Hugh Young.

[a]

$$\Delta x = \frac{1}{2}(v_{1x} + v_{2x})t \Rightarrow v_{1x} = \frac{2\Delta x}{t} - v_{2x}$$

$$\Rightarrow v_{1x} = \frac{2(70.0 \text{ m})}{6.00 \text{ s}} - \left(15.0 \frac{\text{m}}{\text{s}}\right) = 8.33 \frac{\text{m}}{\text{s}}$$

[b]

$$v_x = a_x t + v_{0x} \Rightarrow a_x = \frac{\left(15.0 \frac{\text{m}}{\text{s}}\right) - \left(\frac{2(70.0 \text{ m})}{6.00 \text{ s}} - \left(15.0 \frac{\text{m}}{\text{s}}\right)\right)}{6.00 \text{ s}}$$

$$= \frac{\left[30.0 \frac{\text{m}}{\text{s}} - \frac{70.0}{3.00}\right]}{6.00 \text{ s}} = \frac{\left[\frac{20.0}{3.00}\right]}{6.00} \frac{\text{m}}{\text{s}^2} = \frac{20.0}{18.0} \frac{\text{m}}{\text{s}^2} = 1.11 \frac{\text{m}}{\text{s}^2}$$