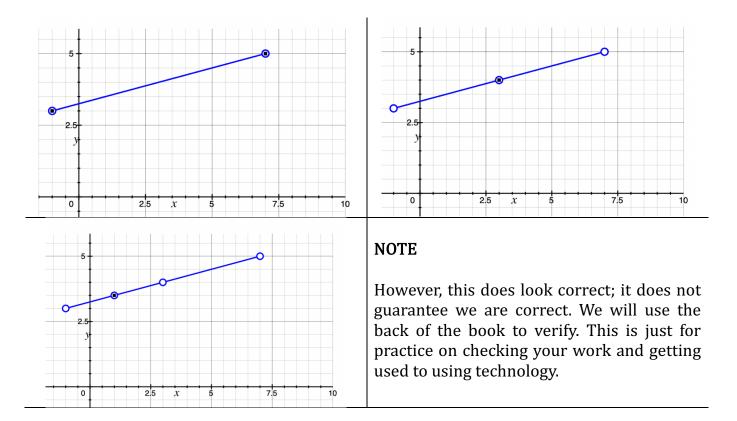
1.1 The Coordinate Plane

Find the point that is one-fourth of the **distance** from the point P(-1,3) to the point Q(7,5)along the segment PQ.


[1st - Formulae] 50% Credit

We need to look for keywords that direct us to instructions. In this case, **distance** (or possibly midpoint) is the instruction. Find the distance formula.

From the textbook—verbatim:

The Distance Formula | Distance between points, $P(x_1, y_1)$, $Q(x_2, y_2)$

$$d(PQ) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Strategize to find the point $\frac{1}{4}$ from $P \rightarrow Q$, we can use the midpoint formula twice. So, the distance formula may not be correct for this (there are always multiple ways to solve problems). We look to the midpoint formula instead.

The Midpoint Formula | Distance between points, $P(x_1, y_1)$, $Q(x_2, y_2)$ 50% of the Credit

AuthorJonathanDavid.com - YouTube.com/@TheCollegeSTEMmajor

$$M(PQ) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

[2nd - Formulate] Up to 50% credit

Because we have an even segment cut twice, we apply the midpoint formula twice as follows.

$$M(PQ) = \left(\frac{-1+7}{2}, \frac{3+5}{2}\right) = (3,4), \qquad M(P, M_{PQ}) = \left(\frac{-1+3}{2}, \frac{3+4}{2}\right) = \left(1, \frac{7}{2}\right).$$

Check your work using a graphing utility. I use the built-in MacBook grapher.

[3rd – Finalize] Point Loss

Thus, the point $\frac{1}{4}$ distance from P is $\left(\frac{1,7}{2}\right)$. [Book verifies this is correct.]