Solve the system of ordinary differential of second order non-homogeneous

Solution to the System of Ordinary Differential Equations

We solve the following system of ODEs:

    \[\ddot{x} - \dot{x} + x = 3\]

    \[\ddot{y} + \dot{y} - y = 0\]

Solving for x(t):

The differential equation for x(t) is:

    \[\ddot{x} - \dot{x} + x = 3.\]

First, find the complementary solution by solving the homogeneous equation:

    \[\ddot{x} - \dot{x} + x = 0.\]

The characteristic equation is:

    \[r^2 - r + 1 = 0.\]

The roots of this equation are:

    \[r = \frac{1 \pm \sqrt{-3}}{2} = \frac{1}{2} \pm i\frac{\sqrt{3}}{2}.\]

The complementary solution is therefore:

    \[x_c(t) = e^{t/2}\left(C_1 \cos\left(\frac{\sqrt{3}}{2}t\right) + C_2 \sin\left(\frac{\sqrt{3}}{2}t\right)\right).\]

For the particular solution, assume x_p = A. Substituting into the equation, we get:

    \[A = 3.\]

Thus, the general solution for x(t) is:

    \[x(t) = e^{t/2}\left(C_1 \cos\left(\frac{\sqrt{3}}{2}t\right) + C_2 \sin\left(\frac{\sqrt{3}}{2}t\right)\right) + 3.\]

Solving for y(t):

The differential equation for y(t) is:

    \[\ddot{y} + \dot{y} - y = 0.\]

The characteristic equation is:

    \[r^2 + r - 1 = 0.\]

The roots of this equation are:

    \[r = \frac{-1 \pm \sqrt{5}}{2}.\]

Thus, the general solution for y(t) is:

    \[y(t) = C_3 e^{\frac{-1 + \sqrt{5}}{2}t} + C_4 e^{\frac{-1 - \sqrt{5}}{2}t}.\]

Final Solution:

The solutions to the system of ODEs are:

    \[x(t) = e^{t/2}\left(C_1 \cos\left(\frac{\sqrt{3}}{2}t\right) + C_2 \sin\left(\frac{\sqrt{3}}{2}t\right)\right) + 3,\]

    \[y(t) = C_3 e^{\frac{-1 + \sqrt{5}}{2}t} + C_4 e^{\frac{-1 - \sqrt{5}}{2}t},\]

where C_1, C_2, C_3, C_4 are constants determined by initial conditions.

Leave a comment