Physics: Mechanics Crash Course

This Crash Course Outline is Based on The University Physics with Modern Physics Textbook

Young, Hugh D., Roger A. Freedman, Todd R. Sandin, and A. Lewis Ford. University Physics with Modern Physics. 15th ed. Pearson, 2019.

Before Starting Physics


Mechanics

1. Units, Physical Quantities, and Vectors <<< (video lessons)
1.1 The Nature of Physics
1.2 Solving Physics Problems
1.3 Standards and Units
1.4 Using and Converting Units
1.5 Uncertainty and Significant Figures
1.6 Estimates and Orders of Magnitude
1.7 Vectors and Vector Addition
1.8 Components of Vectors
1.9 Unit Vectors
1.10 Products of Vectors


2. Motion Along a Straight Line
2.1 Displacement, Time, and Average Velocity
2.2 Instantaneous Velocity
2.3 Average and Instantaneous Acceleration
2.4 Motion with Constant Acceleration
2.5 Freely Falling Objects
2.6 Velocity and Position by Integration


3. Motion in Two or Three Dimensions
3.1 Position and Velocity Vectors
3.2 The Acceleration Vector
3.3 Projectile Motion
3.4 Motion in a Circle
3.5 Relative Velocity


4. Newton’s Laws of Motion
4.1 Force and Interactions
4.2 Newton’s First Law
4.3 Newton’s Second Law
4.4 Mass and Weight
4.5 Newton’s Third Law
4.6 Free-Body Diagrams


5. Applying Newton’s Laws
5.1 Using Newton’s First Law: Particles in Equilibrium
5.2 Using Newton’s Second Law: Dynamics of Particles
5.3 Friction Forces
5.4 Dynamics of Circular Motion
5.5 The Fundamental Forces of Nature


6. Work and Kinetic Energy
6.1 Work
6.2 Kinetic Energy and the Work–Energy Theorem
6.3 Work and Energy with Varying Forces
6.4 Power


7. Potential Energy and Energy Conservation
7.1 Gravitational Potential Energy
7.2 Elastic Potential Energy
7.3 Conservative and Nonconservative Forces
7.4 Force and Potential Energy
7.5 Energy Diagrams


8. Momentum, Impulse, and Collisions
8.1 Momentum and Impulse
8.2 Conservation of Momentum
8.3 Momentum Conservation and Collisions
8.4 Elastic Collisions
8.5 Center of Mass
8.6 Rocket Propulsion


9. Rotation of Rigid Bodies
9.1 Angular Velocity and Acceleration
9.2 Rotation with Constant Angular Acceleration
9.3 Relating Linear and Angular Kinematics
9.4 Energy in Rotational Motion
9.5 Parallel-Axis Theorem
9.6 Moment-of-Inertia Calculations


10. Dynamics of Rotational Motion
10.1 Torque
10.2 Torque and Angular Acceleration for a Rigid Body
10.3 Rigid-Body Rotation About a Moving Axis
10.4 Work and Power in Rotational Motion
10.5 Angular Momentum
10.6 Conservation of Angular Momentum
10.7 Gyroscopes and Precession


11. Equilibrium and Elasticity
11.1 Conditions for Equilibrium
11.2 Center of Gravity
11.3 Solving Rigid-Body Equilibrium Problems
11.4 Stress, Strain, and Elastic Moduli
11.5 Elasticity and Plasticity


12. Fluid Mechanics
12.1 Gases, Liquids, and Density
12.2 Pressure in a Fluid
12.3 Buoyancy
12.4 Fluid Flow
12.5 Bernoulli’s Equation
12.6 Viscosity and Turbulence


13. Gravitation
13.1 Newton’s Law of Gravitation
13.2 Weight
13.3 Gravitational Potential Energy
13.4 The Motion of Satellites
13.5 Kepler’s Laws and the Motion of Planets
13.6 Spherical Mass Distributions
13.7 Apparent Weight and the Earth’s Rotation
13.8 Black Holes


14. Periodic Motion
14.1 Describing Oscillation
14.2 Simple Harmonic Motion
14.3 Energy in Simple Harmonic Motion
14.4 Applications of Simple Harmonic Motion
14.5 The Simple Pendulum
14.6 The Physical Pendulum
14.7 Damped Oscillations
14.8 Forced Oscillations and Resonance


Leave a comment